TD₂ – Polynômes, Analyse asymptotique

Exercice 1 *

Soient $(a,b) \in \mathbb{C}^2$ et $P \in \mathbb{C}[X]$. Déterminer le reste de la division euclidienne de P par le polynôme (X-a)(X-b). On commencera par le cas où $a \neq b$.

Exercice 2 **

Déterminer les polynômes P de $\mathbb{C}[X]$ qui vérifient :

a)
$$P(X+1) = P(X)$$
 b) $(X+1)P(X) = (X-2)P(X+1)$.

Exercice 3 ★★★★

Déterminer les entiers n > 1 pour lesquels le polynôme $P = (X - 1)^n - (X^n - 1)$ admet une racine de multiplicité au moins 2.

Exercice 4 Polynômes de Tchebychev de première espèce **

On définit la suite de polynômes de Tchebychev par $T_0=1,\,T_1=X$ et, pour tout $n\in\mathbb{N}^*$

$$T_{n+1}(X) = 2XT_n(X) - T_{n-1}(X)$$

- 1. (a) Expliciter T_2 et T_3
 - (b) Déterminer pour tout $n \in \mathbb{N}^*$ le degré de T_n et son coefficient dominant.
 - (c) Montrer que, pour tout $n \in \mathbb{N}$, (T_0, T_1, \dots, T_n) est une base de $\mathbb{R}_n[X]$
- 2. (a) Montrer que, pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$

$$\cos((n+2)x) + \cos(nx) = 2\cos(x)\cos((n+1)x)$$

(b) Montrer que, pour tout $n \in \mathbb{N}$ et $x \in \mathbb{R}$

$$T_n(\cos(x)) = \cos(nx)$$

Exercice 5 **

On pose $f(x) = \frac{\ln(1+x)}{1+x}$.

- 1. Étudier f.
- 2. Montrer que f réalise une bijection de] -1,1[sur un intervalle à déterminer, et que la réciproque notée f^{-1} est de classe C^{∞} .
- 3. Montrer que f^{-1} admet un développement limité en 0 à tout ordre, préciser celui à l'ordre 3 si possible.

Exercice 6 **

En exploitant des formules de Taylor, montrer les inégalité suivantes :

- 1. Pour tout $x \ge 0$, $0 \le \sqrt[3]{1+x} 1 \frac{x}{3} + \frac{x^2}{9} \le \frac{5x^3}{81}$.
- 2. Pour tout $(x,h) \in \mathbb{R}^2$, $\left|\cos(x+h) \cos x + h\sin x + \frac{h^2}{2}\cos x\right| \leqslant \frac{|h|^3}{6}$.

Exercice 7 **

1

En utilisant l'inégalité de Taylor-Lagrange, montrer que les suites suivantes convergent et déterminer leurs limites :

a)
$$u_n = \sum_{k=0}^n \frac{(-1)^k}{k+1}$$
 ; b) $u_n = \sum_{k=0}^n \frac{3^{k-2}}{k!}$.

Exercice 8

Déterminer les DL suivants :

- $\frac{\tan x x}{x^3}$ en 0 à l'ordre 2
- b) $\frac{\cos x 1}{e^x 1 \sin x}$ en 0 à l'ordre 2
- c) $\sqrt{\frac{x^2+x+1}{x^2+1}}$ en $+\infty$ à l'ordre 2 d) $\ln(1+\cos x)$ en 0 à l'ordre 4
- e) $\tan(x)$ en $\frac{\pi}{4}$ à l'ordre 3
- f) $\sin\left(\theta \frac{2\pi}{3}\right) \frac{\sin\theta}{1 + 2\cos\theta}$ en $\frac{2\pi}{3}$ à l'ordre 1

Exercice 9

On pose, pour $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \setminus \{0\}$, $f(x) = \frac{1}{\sin x} - \frac{1}{x}$. Montrer que l'on peut prolonger f en 0 en une fonction de classe \mathscr{C}^1 sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Exercice 10 ***

Effectuer l'étude complète de chacune des fonctions suivantes (en particulier : asymptotes, prolongements éventuels et variations). Tracer l'allure de la courbe.

a)
$$f(x) = \frac{x \operatorname{ch}(x) - \operatorname{sh}(x)}{\operatorname{ch}(x) - 1}$$
 b) $f(x) = \ln\left(\frac{e^x - 1}{x}\right)$ c) $f(x) = x \arctan\left(\frac{x}{x - 1}\right)$

*** Exercice 11

Soit $\lambda \in]0,1[$ donné. Soit $f_n(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$ et $f(x) = e^x$.

- 1. Déterminer, sur \mathbb{R} , la position du graphe de f_n par rapport à celui de f.
- 2. Déterminer le nombre de solutions de l'équation $f_n(x) = 0$.
- 3. Prouver l'existence et l'unicité de la racine positive x_n de l'équation $f_n(x) = \lambda f(x)$. Montrer que la suite (x_n) admet une limite qu'on déterminera.

Exercice 12

Soit f continue sur \mathbb{R} telle que : $\forall (x,y) \in \mathbb{R}^2, 2f(x)f(y) = \int_{\mathbb{R}^n}^{x+y} f(t) dt$.

- 1. Montrer que f est nécessairement de classe \mathcal{C}^1 . Montrer que f est impaire.
- 2. Montrer que $\forall (x,y) \in \mathbb{R}^2$, f''(x)f(y) = f(x)f''(y). Conclure.
- 3. Etudier la réciproque.

Exercice 13 ***

Déterminer toutes les fonctions f, dérivables sur \mathbb{R}_+^* , à valeurs réelles telles que pour tout réel x > 0, $f'(x) = f\left(\frac{1}{x}\right)$. On pourra montrer que, si f est solution, alors f vérifie une équation différentielle du second ordre que l'on intégrera en $posant \ t = ln(x).$

Exercices issus d'oraux

Exercice 14

(Oral 2013, 2018)

Soit f définie par $f(x) = x \ln(5 + \sin(x))$ sur $I = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.

- 1. Justifier que f est bien définie et \mathcal{C}^1 . Calculer f'(x).
- 2. Encadrer $g(x) = \ln(5 + \sin(x))$ et $h(x) = \frac{1}{5 + \sin(x)}$. En déduire les variations de f.
- 3. Montrer que f est une bijection de I vers un intervalle J à préciser.
- 4. Écrire un développement limité de f à l'ordre 4 en 0 et en déduire la tangente à la courbe \mathscr{C}_f de f en (0, f(0)) ainsi que la position de \mathscr{C}_f par rapport à cette tangente.

Exercice 15 ***

(Oral 2013)

Soit f la fonction définie sur \mathbb{R} par $f(x) = x + x^2 - 3x^3$.

- 1. Déterminer le plus grand intervalle I contenant 0 sur lequel f est bijective.
- 2. On appelle g la fonction réciproque de f sur I. Déterminer le développement limité à l'ordre 4 en 0 de g.

(Oral 2012,2013)

Déterminer les polynômes $P \in \mathbb{C}[X]$ tels que $P(X^2) = P(X) \times P(X+1)$.

Soit n un entier naturel impair, on considère $P \in \mathbb{R}[X]$ vérifiant $(E): (X^n + 1)P(X) = P(X^2)$

- 1. Montrer que le polynôme $X^n 1$ vérifie la relation (E).
- 2. Déterminer le degré du polynôme P.
- 3. Notons ω une racine n-ième de -1, montrer que $-\omega$ est racine de P.
- 4. Quels sont tous les polynômes vérifiant l'équation (E)?

Exercice 18 ***

Soit
$$f(t) = \begin{cases} \frac{1 - e^{-t}}{t} & \text{si } t \in \mathbb{R}^* \\ 1 & \text{si } t = 0 \end{cases}$$
.

- 1. Montrer que f est continue sur \mathbb{R} et strictement positive.
- 2. Étudier la monotonie de f.
- 3. Déterminer l'équation de la tangente en 0 à la courbe représentative de f.
- 4. Tracer l'allure de la courbe représentative de f.